Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jun;147(6 Suppl):S11-7.
doi: 10.1210/en.2005-1164. Epub 2006 May 11.

Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations

Affiliations
Review

Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations

Retha R Newbold et al. Endocrinology. 2006 Jun.

Abstract

The synthetic estrogen diethylstilbestrol (DES) is a potent perinatal endocrine disruptor. In humans and experimental animals, exposure to DES during critical periods of reproductive tract differentiation permanently alters estrogen target tissues and results in long-term abnormalities such as uterine neoplasia that are not manifested until later in life. Using the developmentally exposed DES mouse, multiple mechanisms have been identified that play a role in its carcinogenic and toxic effects. Analysis of the DES murine uterus reveals altered gene expression pathways that include an estrogen-regulated component. Thus, perinatal DES exposure, especially at low doses, offers the opportunity to study effects caused by weaker environmental estrogens and provides an example of the emerging scientific field termed the developmental origin of adult disease. As a model endocrine disruptor, it is of particular interest that even low doses of DES increase uterine tumor incidence. Additional studies have verified that DES is not unique; when other environmental estrogens are tested at equal estrogenic doses, developmental exposure results in increased incidence of uterine neoplasia similar to that caused by DES. Interestingly, our data suggest that this increased susceptibility for tumors is passed on from the maternal lineage to subsequent generations of male and female descendants; the mechanisms involved in these transgenerational events include genetic and epigenetic events. Together, our data point out the unique sensitivity of the developing organism to endocrine-disrupting chemicals, the occurrence of long-term effects after developmental exposure, and the possibility for adverse effects to be transmitted to subsequent generations.

PubMed Disclaimer

Similar articles

Cited by

Publication types