Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 May-Jun;79(3):573-80.
doi: 10.1086/501062. Epub 2006 Apr 4.

Energetics of lizard embryos are not canalized by thermal acclimation

Affiliations
Comparative Study

Energetics of lizard embryos are not canalized by thermal acclimation

Michael J Angilletta Jr et al. Physiol Biochem Zool. 2006 May-Jun.

Abstract

In some species of ectotherms, temperature has little or no effect on the amount of energy expended during embryonic development. This phenomenon can result from either of two mechanisms: (1) a shorter incubation period at higher temperatures, which offsets the expected increase in metabolic rate, or (2) a compensatory decrease in the rate at which embryos expend energy for maintenance. To distinguish the relative importance of these two mechanisms, we quantified the acute and chronic effects of temperature on embryonic metabolism in the eastern fence lizard (Sceloporus undulatus). First, we measured metabolic rates of individual embryos at 27 degrees, 31 degrees, and 34 degrees C. Second, we examined the capacity for thermal acclimation by measuring the metabolic rates of embryos at 30 degrees C, after a period of incubation at either 28 degrees or 32 degrees C. As with adult reptiles, the metabolic rates of embryos increased with an acute increase in temperature; the Q(10) of metabolic rate from 27 degrees to 34 degrees C was 2.1 (+/-0.2). No evidence of thermal acclimation was observed either early or late in development. In S. undulatus, a shorter incubation period at higher temperatures appears to play the primary role in canalizing the energy budget of an embryo, but a reduction in the cost of growth could play a secondary role.

PubMed Disclaimer

Publication types

LinkOut - more resources