Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 May;13(4):304-11.
doi: 10.1016/j.jsgi.2006.03.003.

The granulin-epithelin precursor is a steroid-regulated growth factor in endometrial cancer

Affiliations
Comparative Study

The granulin-epithelin precursor is a steroid-regulated growth factor in endometrial cancer

Monica Brown Jones et al. J Soc Gynecol Investig. 2006 May.

Abstract

Objectives: The majority of endometrial cancers arise as a result of estrogen stimulation, the molecular targets of which remain incompletely defined. We hypothesize that the granulin-epithelin precursor (GEP) may be one such target. In this study, we examined the frequency of GEP and estrogen receptor (ER) co-expression in human endometrial cancers. Once we established the co-expression of GEP with the estrogen receptor we examined the potential estrogen regulation of GEP expression, as well as the functional significance of GEP expression in vitro.

Methods: Double immunofluorescence and confocal microscopy were used to compare GEP and ER expression among 41 endometrial cancers. The effects of estradiol and tamoxifen treatment on GEP expression in two endometrial cancer cell lines, KLE and HEC-1-A, were assessed through reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis. The antiproliferative effect of GEP silencing by short hairpin (sh)RNA, was evaluated in HEC-1-A cells using an MTT assay.

Results: GEP co-expression with ER was observed in 63% of the cancers examined. A two- to fivefold increase in GEP expression with estradiol and/or tamoxifen treatment was observed in KLE cells. Silencing of GEP in HEC-1-A cells using shRNA resulted in a decrease in proliferation among transfected cells.

Conclusions: Co-expression of GEP and ER in endometrial cancer cells, and the regulation of GEP by estrogen, suggests a role for GEP in steroid-mediated endometrial cancer cell growth. Further characterization of GEP as a steroid-mediated growth factor in these cells may broaden our understanding of endometrial cancer biology and also provide guidance in the development of novel therapeutic targets.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources