Golgi maturation visualized in living yeast
- PMID: 16699524
- DOI: 10.1038/nature04717
Golgi maturation visualized in living yeast
Abstract
The Golgi apparatus is composed of biochemically distinct early (cis, medial) and late (trans, TGN) cisternae. There is debate about the nature of these cisternae. The stable compartments model predicts that each cisterna is a long-lived structure that retains a characteristic set of Golgi-resident proteins. In this view, secretory cargo proteins are transported by vesicles from one cisterna to the next. The cisternal maturation model predicts that each cisterna is a transient structure that matures from early to late by acquiring and then losing specific Golgi-resident proteins. In this view, secretory cargo proteins traverse the Golgi by remaining within the maturing cisternae. Various observations have been interpreted as supporting one or the other mechanism. Here we provide a direct test of the two models using three-dimensional time-lapse fluorescence microscopy of the yeast Saccharomyces cerevisiae. This approach reveals that individual cisternae mature, and do so at a consistent rate. In parallel, we used pulse-chase analysis to measure the transport of two secretory cargo proteins. The rate of cisternal maturation matches the rate of protein transport through the secretory pathway, suggesting that cisternal maturation can account for the kinetics of secretory traffic.
Comment in
-
Cell biology: the Golgi grows up.Nature. 2006 Jun 22;441(7096):939-40. doi: 10.1038/441939a. Nature. 2006. PMID: 16791181 No abstract available.
Similar articles
-
Live imaging of yeast Golgi cisternal maturation.Nature. 2006 Jun 22;441(7096):1007-10. doi: 10.1038/nature04737. Epub 2006 May 14. Nature. 2006. PMID: 16699523
-
Visualization of secretory cargo transport within the Golgi apparatus.J Cell Biol. 2019 May 6;218(5):1602-1618. doi: 10.1083/jcb.201807194. Epub 2019 Mar 11. J Cell Biol. 2019. PMID: 30858192 Free PMC article.
-
Maturation-driven transport and AP-1-dependent recycling of a secretory cargo in the Golgi.J Cell Biol. 2019 May 6;218(5):1582-1601. doi: 10.1083/jcb.201807195. Epub 2019 Mar 11. J Cell Biol. 2019. PMID: 30858194 Free PMC article.
-
The yeast Golgi apparatus.Traffic. 2012 Apr;13(4):505-10. doi: 10.1111/j.1600-0854.2011.01316.x. Epub 2011 Dec 27. Traffic. 2012. PMID: 22132734 Review.
-
Traffic through the Golgi apparatus.J Cell Biol. 2001 Dec 24;155(7):1099-101. doi: 10.1083/jcb.200110160. Epub 2001 Dec 24. J Cell Biol. 2001. PMID: 11756463 Free PMC article. Review.
Cited by
-
The coronavirus E protein: assembly and beyond.Viruses. 2012 Mar;4(3):363-82. doi: 10.3390/v4030363. Epub 2012 Mar 8. Viruses. 2012. PMID: 22590676 Free PMC article. Review.
-
Three-dimensional and immune electron microscopic analysis of the secretory pathway in Saccharomyces cerevisiae.Histochem Cell Biol. 2016 Nov;146(5):515-527. doi: 10.1007/s00418-016-1483-y. Epub 2016 Sep 3. Histochem Cell Biol. 2016. PMID: 27590193
-
Super resolution live imaging: The key for unveiling the true dynamics of membrane traffic around the Golgi apparatus in plant cells.Front Plant Sci. 2022 Dec 22;13:1100757. doi: 10.3389/fpls.2022.1100757. eCollection 2022. Front Plant Sci. 2022. PMID: 36618665 Free PMC article. Review.
-
Defining the boundaries: Rab GEFs and GAPs.Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14185-6. doi: 10.1073/pnas.0907725106. Epub 2009 Aug 19. Proc Natl Acad Sci U S A. 2009. PMID: 19706500 Free PMC article. No abstract available.
-
Svp26 facilitates endoplasmic reticulum to golgi transport of a set of mannosyltransferases in Saccharomyces cerevisiae.J Biol Chem. 2010 May 14;285(20):15420-15429. doi: 10.1074/jbc.M109.086272. Epub 2010 Mar 17. J Biol Chem. 2010. PMID: 20236934 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous