Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Apr;21(2):83-98.
doi: 10.2133/dmpk.21.83.

Drug-metabolizing ability of molybdenum hydroxylases

Affiliations
Free article
Review

Drug-metabolizing ability of molybdenum hydroxylases

Shigeyuki Kitamura et al. Drug Metab Pharmacokinet. 2006 Apr.
Free article

Abstract

Molybdenum hydroxylases, which include aldehyde oxidase and xanthine oxidoreductase, are involved in the metabolism of some medicines in humans. They exhibit oxidase activity towards various heterocyclic compounds and aldehydes. The liver cytosol of various mammals also exhibits a significant reductase activity toward nitro, sulfoxide, N-oxide and other moieties, catalyzed by aldehyde oxidase. There is considerable variability of aldehyde oxidase activity in liver cytosol of mammals: humans show the highest activity, rats and mice show low activity, and dogs have no detectable activity. On the other hand, xanthine oxidoreductase activity is present widely among species. Interindividual variation of aldehyde oxidase activity is present in humans. Drug-drug interactions associated with aldehyde oxidase and xanthine oxidoreductase are of potential clinical significance. Drug metabolizing ability of molybdenum hydroxylases and the variation of the activity are described in this review.

PubMed Disclaimer