Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 19;25(49):6457-66.
doi: 10.1038/sj.onc.1209656. Epub 2006 May 15.

Unique role of SNT-2/FRS2beta/FRS3 docking/adaptor protein for negative regulation in EGF receptor tyrosine kinase signaling pathways

Affiliations

Unique role of SNT-2/FRS2beta/FRS3 docking/adaptor protein for negative regulation in EGF receptor tyrosine kinase signaling pathways

L Huang et al. Oncogene. .

Abstract

The membrane-linked docking protein SNT-2/FRS2beta/FRS3 becomes tyrosine phosphorylated in response to fibroblast growth factors (FGFs) and neurotrophins and serves as a platform for recruitment of multiple signaling proteins, including Grb2 and Shp2, to FGF receptors or neurotrophin receptors. We previously reported that SNT-2 is not tyrosine phosphorylated significantly in response to epidermal growth factor (EGF) but that it inhibits ERK activation via EGF stimulation by forming a complex with ERK2. In the present report, we show that expression of SNT-2 suppressed EGF-induced cell transformation and proliferation, and expression level of SNT-2 is downregulated in cancer. The activities of the major signaling molecules in EGF receptor (EGFR) signal transduction pathways, including autophosphorylation of EGFR, were attenuated in cells expressing SNT-2 but not in cells expressing SNT-2 mutants lacking the ERK2-binding domain. Furthermore, SNT-2 constitutively bound to EGFR through the phosphotyrosine binding (PTB) domain both with and without EGF stimulation. Treatment of cells with MEK inhibitor U0126 partially restored the phosphorylation levels of MEK and EGFR in cells expressing SNT-2. On the basis of these findings, we propose a novel mechanism of negative control of EGFR tyrosine kinase activity with SNT-2 by recruiting ERK2, which is the site of negative-feedback loop from ERK, ultimately leading to inhibition of EGF-induced cell transformation and proliferation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances