Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;17(1-2):3-15.
doi: 10.1515/revneuro.2006.17.1-2.3.

Anatomy of the avian hippocampal formation

Affiliations
Review

Anatomy of the avian hippocampal formation

Yasuro Atoji et al. Rev Neurosci. 2006.

Abstract

Increasing knowledge of the avian hippocampal formation (hippocampus and parahippocampal area) suggests that it plays a role in a variety of behaviors, such as homing, cache retrieving, visual discrimination, imprinting, and sexual behavior. Knowledge of the neural circuits in the hippocampal formation and its related areas or nuclei is important for the understanding of these functions. This review therefore describes the functional neuroanatomy of the avian hippocampal formations, i.e., its subdivisions, cytoarchitecture, and afferent and efferent connections. Evidence obtained by a combination of Nissl staining and tract-tracing shows that the pigeon hippocampal formation can be divided into seven subdivisions: dorsolateral (DL), dorsomedial (DM), triangular (Tr), V-shaped (V), magnocellular (Ma), parvocellular, and cell-poor regions. DL and DM can be further divided into dorsal and ventral, and lateral and medial portions, respectively. In the hippocampal formation, reciprocal connections are found between DL-DM, DL-Tr, DL-Ma, DM-Ma, DM-V, and Tr-V. Neurons in the V-shaped layer appear to be intrinsic neurons. Sensory inputs from higher order visual and olfactory stations enter DL and DM, are modified or integrated by intrinsic hippocampal circuitry, and the outputs are sent, via DL and DM, to various telencephalic nuclei, septum, and hypothalamus. The neural pathways indicate that the hippocampal formation plays a central role in the limbic system, which also includes the dorsolateral corticoid area, nucleus taeniae of the amygdala, posterior pallial amygdala, septum, medial part of the anterior dorsolateral nucleus of the thalamus, and the lateral mammillary nucleus. Connectional and comparative studies, including the use of kainic acid excitotoxicity, suggest that the V-shaped layer is comparable to the dentate gyrus of the mammalian hippocampal formation and DM to Ammon's horn and subiculum.

PubMed Disclaimer

LinkOut - more resources