Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;21(5):894-901.
doi: 10.1111/j.1440-1746.2006.04144.x.

17 Beta-estradiol prevents cytotoxicity from hydrophobic bile acids in HepG2 and WRL-68 cell cultures

Affiliations

17 Beta-estradiol prevents cytotoxicity from hydrophobic bile acids in HepG2 and WRL-68 cell cultures

Matteo Ricchi et al. J Gastroenterol Hepatol. 2006 May.

Abstract

Background: Epidemiological and clinical studies suggest the possibility that estrogens might have a cytoprotective effect on the liver. The aim of the present study was to test the hypothesis that 17beta-estradiol (E2) prevents hepatocellular damage induced by deoxycholic acid (DCA), a hydrophobic bile acid.

Methods: HepG2 cells were exposed for 24 h to DCA (350 micromol/L). Cell viability, aspartate aminotransferase and lactate dehydrogenase activity and apoptosis were measured as indices of cell toxicity. The effect of DCA was compared to that observed using either a hydrophilic bile acid, ursodeoxycholic acid (UDCA; 100 micromol/L), or E2 at different concentrations (1 nmol/L, 10 nmol/L, 50 nmol/L and 50 micromol/L) or mixtures of E2/DCA or UDCA/DCA. The same experiments were performed using WRL-68 cells that, at variance with HepG2, express a higher level of nuclear estrogen receptor.

Results: High concentrations of E2 and UDCA prevented DCA-induced decrease in cell viability, increase in enzyme activity and apoptosis evaluated both by 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and TdT-mediated dUTP nick-end labeling (TUNEL) assays. In addition, DCA-related apoptosis, assessed by caspase activity, was also prevented by E2 (P < 0.01) in physiological (1-10 nmol/L) doses. The cytoprotective effects of E2 and UDCA was also observed in the WRL-68 cell line.

Conclusions: 17Beta-Estradiol prevents DCA-induced cell damage in HepG2 and WRL-68 cell lines to an extent comparable to UDCA. The hypothesis that the protective effect of E2 may be mediated by a mechanism that is nuclear estrogen receptor independent, deserves further verification.

PubMed Disclaimer

Publication types

LinkOut - more resources