Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 May;19(3):325-41.
doi: 10.1002/nbm.1051.

Parallel imaging in cardiovascular MRI: methods and applications

Affiliations
Review

Parallel imaging in cardiovascular MRI: methods and applications

Thoralf Niendorf et al. NMR Biomed. 2006 May.

Abstract

Cardiovascular MR imaging (CVMR) has become a valuable modality for the non-invasive detection and characterization of cardiovascular diseases. CVMR requires high imaging speed and efficiency, which is fundamentally limited in conventional cardiovascular MRI studies. With the introduction of parallel imaging, alternative means for increasing acquisition speed beyond these limits have become available. In parallel imaging some image data are acquired simultaneously, using RF detector coil sensitivities to encode simultaneous spatial information that complements the information gleaned from sequential application of magnetic field gradients. The resulting improvements in imaging speed can be used in various ways, including shortening long examinations, improving spatial resolution and/or anatomic coverage, improving temporal resolution, enhancing image quality, overcoming physiological constraints, detecting and correcting for physiologic motion, and streamlining work flow. Examples of each of these strategies will be provided in this review. First, basic principles and key concepts of parallel MR are described. Second, practical considerations such as coil array design, coil sensitivity calibrations, customized pulse sequences and tailored imaging parameters are outlined. Next, cardiovascular applications of parallel MR are reviewed, ranging from cardiac anatomical and functional assessment to myocardial perfusion and viability to MR angiography of the coronary arteries and the large vessels. Finally, current trends and future directions in parallel CVMR are considered.

PubMed Disclaimer

MeSH terms

LinkOut - more resources