Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;72(6):1276-84.
doi: 10.1007/s00253-006-0425-3. Epub 2006 May 18.

Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani

Affiliations

Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani

C S Quan et al. Appl Microbiol Biotechnol. 2006 Oct.

Abstract

Strain CF-66 with strong antifungal activity against Rhizoctonia solani was isolated from compost samples. It is clearly demonstrated that strain CF-66 is belonging to Burkholderia cepacia complex by the morphological and biochemical tests and 16S rDNA sequence. The B. cepacia complex consists of a group of bacteria currently organized into nine genomovars, among them genomovar II and genomovar III, contain the highly epidemic strains. However, it was known that strain CF-66 is not a member of genomovar II or III of the B. cepacia complex by species-specific polymerase chain reaction assay. In this study, the antifungal compound CF66I produced by strain CF-66 was purified and characterized. Based on the nuclear magnetic resonance, GC-MS spectral and infrared spectral data, CF66I was confirmed to have amide bonds, alpha-methyl fatty acid, bromine, and some structural units such as CH(2)CH(2)O. CF66I is stable to high temperature, proteolytic enzymes, and organic solvents. CF66I inhibit the growth of a variety of plant pathogenic fungi and pathogenic yeast, whereas bacterial cells are unaffected. CF66I mainly reduced hyphal extension rates in a dose-dependent manner and induced severe change in cell morphology that resulted in swelled and formed very short hyphae with multiple branches.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Associated data

LinkOut - more resources