Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;119(5 Pt 1):2889-904.
doi: 10.1121/1.2169918.

Time-course of the human medial olivocochlear reflex

Affiliations

Time-course of the human medial olivocochlear reflex

Bradford C Backus et al. J Acoust Soc Am. 2006 May.

Abstract

The time-course of the human medial olivocochlear reflex (MOCR) was measured via its suppression of stimulus-frequency otoacoustic emissions (SFOAEs) in nine ears. MOCR effects were elicited by contralateral, ipsilateral or bilateral wideband acoustic stimulation. As a first approximation, MOCR effects increased like a saturating exponential with a time constant of 277+/-62 ms, and decayed exponentially with a time constant of 159+/-54 ms. However, in ears with the highest signal-to-noise ratios (4/9), onset time constants could be separated into "fast," tau= approximately 70 ms, "medium," tau = approximately 330 ms, and "slow," tau = approximately 25 s components, and there was an overshoot in the decay like an under-damped sinusoid. Both the buildup and decay could be modeled as a second order differential equation and the differences between the buildup and decay could be accounted for by decreasing one coefficient by a factor of 2. The reflex onset and offset delays were both approximately 25 ms. Although changing elicitor level over a 20 dB SPL range produced a consistent systematic change in response amplitude, the time course did not show a consistent dependence on elictor level, nor did the time-courses of ipsilaterally, contralaterally, and bilaterally activated MOCR responses differ significantly. Given the MOCR's time-course, it is best suited to operate on acoustic changes that persist for 100's of milliseconds.

PubMed Disclaimer

Publication types

LinkOut - more resources