Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;95(6):3727-41.
doi: 10.1152/jn.00909.2005.

Presynaptic GABA(B) receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage-gated Ca2+ channels

Affiliations
Free article

Presynaptic GABA(B) receptors regulate retinohypothalamic tract synaptic transmission by inhibiting voltage-gated Ca2+ channels

Mykhaylo G Moldavan et al. J Neurophysiol. 2006 Jun.
Free article

Abstract

Presynaptic GABA(B) receptor activation inhibits glutamate release from retinohypothalamic tract (RHT) terminals in the suprachiasmatic nucleus (SCN). Voltage-clamp whole cell recordings from rat SCN neurons and optical recordings of Ca2+-sensitive fluorescent probes within RHT terminals were used to examine GABA(B)-receptor modulation of RHT transmission. Baclofen inhibited evoked excitatory postsynaptic currents (EPSCs) in a concentration-dependent manner equally during the day and night. Blockers of N-, P/Q-, T-, and R-type voltage-dependent Ca2+ channels, but not L-type, reduced the EPSC amplitude by 66, 36, 32, and 18% of control, respectively. Joint application of multiple Ca2+ channel blockers inhibited the EPSCs less than that predicted, consistent with a model in which multiple Ca2+ channels overlap in the regulation of transmitter release. Presynaptic inhibition of EPSCs by baclofen was occluded by omega-conotoxin GVIA (< or = 72%), mibefradil (< or = 52%), and omega-agatoxin TK (< or = 15%), but not by SNX-482 or nimodipine. Baclofen reduced both evoked presynaptic Ca2+ influx and resting Ca2+ concentration in RHT terminals. Tertiapin did not alter the evoked EPSC and baclofen-induced inhibition, indicating that baclofen does not inhibit glutamate release by activation of Kir3 channels. Neither Ba2+ nor high extracellular K+ modified the baclofen-induced inhibition. 4-Aminopyridine (4-AP) significantly increased the EPSC amplitude and the charge transfer, and dramatically reduced the baclofen effect. These data indicate that baclofen inhibits glutamate release from RHT terminals by blocking N-, T-, and P/Q-type Ca2+ channels, and possibly by activation of 4-AP-sensitive K+ channels, but not by inhibition of R- and L-type Ca2+ channels or by Kir3 channel activation.

PubMed Disclaimer

Publication types

LinkOut - more resources