Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991;48(5):373-85.
doi: 10.1016/0024-3205(91)90492-t.

The aging brain: protein phosphorylation as a target of changes in neuronal function

Affiliations
Review

The aging brain: protein phosphorylation as a target of changes in neuronal function

M S Magnoni et al. Life Sci. 1991.

Abstract

There is evidence that senescence affects neurotransmission at different levels. In particular, this review summarizes the studies on age-dependent modifications in protein phosphorylation, which represents the final pathway in the action of transmitters and hormones at neuronal level. Cyclic AMP-dependent protein kinase and protein kinase C have been reported to be modified during aging in various cerebral areas; the changes may involve either enzyme activity or substrate availability. These findings can be related to the alterations in neurotransmitter function and synaptic efficiency observed in the senescent brain. The activity of the other types of protein kinases (tyrosine-, cGMP-, calcium/calmodulin-dependent) during aging needs to be explored. An emerging point is the role of protein phosphorylation in the transfer of membrane signals to the nucleus, for the activation or disactivation of specific genes responsible for long-term neuronal events. Along this view, alterations in protein kinase pathway during senescence would ultimately affect gene expression, resulting in long term modifications of cell function. The reviewed literature opens the perspective of restoring some of the deficits associated with senescence by modulating protein phosphorylation pathway.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources