Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Feb;34(2):717-25.
doi: 10.1021/jm00106a037.

Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer

Affiliations

Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer

R J Bridges et al. J Med Chem. 1991 Feb.

Abstract

In order to determine the conformational requirements for binding of L-glutamate to the proteins involved in the process of neurotransmission, rigid analogues containing an embedded glutamate moiety have been prepared. These "conformer mimics", the pyrrolidine-2,4-dicarboxylates 4, 7, 11, and 14, were synthesized from commercially available trans-4-hydroxy-L-proline and cis-4-hydroxy-D-proline, and then were tested for their ability to inhibit the high-affinity transport of [3H]-L-glutamate into synaptosomes and to block the binding of radioligands to the NMDA (N-methyl-D-aspartate), KA (kainate), and QA (quisqualate) glutamate neurotransmitter receptor sites. While none of the four analogues binds effectively to the excitatory receptors, the L-trans-isomer 7 is a potent and selective competitive inhibitor of L-glutamate transport. These results delineate a specific structural/conformational preference for binding to the uptake system that is distinct from that required for binding to the NMDA, KA, and QA receptors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources