Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 1;305(8):620-30.
doi: 10.1002/jez.a.294.

Differential expression of selected mitochondrial genes in hibernating little brown bats, Myotis lucifugus

Affiliations

Differential expression of selected mitochondrial genes in hibernating little brown bats, Myotis lucifugus

Sean F Eddy et al. J Exp Zool A Comp Exp Biol. .

Abstract

High rates of non-shivering thermogenesis by brown adipose tissue accompanied by additional shivering thermogenesis in skeletal muscle provide the powerful reheating of body organs that allows hibernating mammals to return from their state of cold torpor back to euthermic function. Previous studies have suggested that changes to brown adipose mitochondria occur during hibernation and are partially responsible for its capacity for non-shivering thermogenesis. The current study shows that selected mitochondrial enzyme activities are elevated and selected genes and proteins are induced during torpor in brown adipose tissue of the little brown bat, Myotis lucifugus. Cytochrome oxidase activity in brown adipose tissue was more than 3-fold higher during torpor than in euthermic animals. Transcript levels of mitochondria-encoded genes, coxII and nad4, were also 3-4-fold higher during torpor, as evidenced by northern blotting. By contrast, transcripts of these genes were unchanged in skeletal muscle during torpor. Protein levels of carnitine palmitoyl transferase-1beta, an enzyme embedded in the outer membrane of the mitochondria that is the rate-limiting step enzyme in beta-oxidation, were also elevated by 2-fold during torpor in brown adipose but were unchanged in skeletal muscle. Cloning and sequencing of a 624 bp segment of cpt-1beta revealed a number of amino acid substitutions in the bat protein as compared to CPT-1beta from other mammals; these may be beneficial for enzyme function at low body temperatures during torpor. This study provides further evidence for a key role of mitochondria in hibernation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources