Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 May-Jun;20(3):361-6.

Thioridazine reduces resistance of methicillin-resistant staphylococcus aureus by inhibiting a reserpine-sensitive efflux pump

Affiliations
  • PMID: 16724671
Free article
Comparative Study

Thioridazine reduces resistance of methicillin-resistant staphylococcus aureus by inhibiting a reserpine-sensitive efflux pump

Malthe M Kristiansen et al. In Vivo. 2006 May-Jun.
Free article

Abstract

Previous studies suggested that the phenothiazine chlorpromazine (CPZ) could reverse or reduce the antibiotic resistance of bacteria. In some areas of the world, the majority of Staphylococcus aureus isolates are now resistant to methicillin, prompting this study to see whether such resistance can be altered by phenothiazine thioridazine (TZ), an agent with equal antibacterial activity, which is free of the severe side-effects associated with chronic administration of CPZ. The results indicated that, whereas methicillin-sensitive strains of Staphylococcus aureus (MSSA) were not rendered more susceptible to oxacillin, resistance to oxacillin by highly-resistant strains (MRSA) could be significantly reduced by sub-inhibitory concentrations of TZ. Reserpine, an inhibitor of efflux pumps, was also shown to reduce the resistance of MRSA strains to oxacillin in a concentration-dependent manner. The phenothiazines have been shown, by others, to inhibit the efflux pumps of bacteria and the mechanism by which MRSA are rendered more susceptible to oxacillin in the presence of TZ is believed to be due to a similar efflux pump.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources