Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Mar;6(1):1-19.
doi: 10.2174/187152906776092659.

Reactive oxygen species in vascular wall

Affiliations
Review

Reactive oxygen species in vascular wall

Lai Ming Yung et al. Cardiovasc Hematol Disord Drug Targets. 2006 Mar.

Abstract

Reactive oxygen species (ROS) contribute to the pathogenesis of cardiovascular diseases including hypertension, atherosclerosis, cardiac hypertrophy, heart failure and diabetes mellitus. Oxidative stress is resulted from excessive generation of ROS that outstrips the antioxidant system. Various agonists, pathological conditions and therapeutic interventions lead to modulated expression and function of oxidant and antioxidant enzymes, including NAD(P)H oxidase, endothelial nitric oxide synthase, xanthine oxidase, myeloperoxidase, superoxide dismutases, catalase and glutathione peroxidase. ROS formed in vascular wall target a wide range of signaling molecules and cellular pathways in both endothelium and vascular smooth muscle, such as transcription factors, protein tyrosine phosphatase, protein tyrosine kinase, mitogen-activated protein kinase, Ca(2+)-transporting system and protein modification. ROS also have distinct physiological and pathophysiological impacts on vascular cells. ROS contribute to vascular dysfunction and remodeling through oxidative damage by (1) reducing the bioavailability of NO, (2) impairing endothelium-dependent vasodilatation and endothelial cell growth, (3) causing apoptosis or anoikis, (4) stimulating endothelial cell migration, and (5) activating adhesion molecules and inflammatory reaction, leading to endothelial dysfunction, an initial episode progressing toward hypertension and atherosclerosis. Cellular events underlying these processes involve changes in vascular smooth muscle cell growth, apoptosis/anoikis, cell migration, inflammation, and vasoconstriction. The present communication focuses on the biology of ROS signaling in vascular cells, discusses how oxidative stress contributes to vascular damage, and the therapeutic strategies/biotic factors that can prevent or treat ROS-associated cardiovascular disorders.

PubMed Disclaimer

Publication types

MeSH terms

Substances