Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Sep 20;123(2-3):77-94.
doi: 10.1016/j.bpc.2006.05.003. Epub 2006 May 30.

Kinetics of bimolecular reactions in model bilayers and biological membranes. A critical review

Affiliations
Review

Kinetics of bimolecular reactions in model bilayers and biological membranes. A critical review

Eurico Melo et al. Biophys Chem. .

Abstract

The quantitative study of the probability of molecular encounters giving rise to a reaction in membranes is a challenging discipline. Model systems, model in the sense that they use model bilayers and model reactants, have been widely used for this purpose, but the methodologies employed for the analysis of the results obtained in experiments, and for experimental design, are so disparate that a concerned experimentalist has difficulty in deciding about the value of each approach. This review intends to examine the several approaches that can be found in the literature showing, when feasible, the weakness, strengths and limits of application of each of them. There is not, so far, a full experimental validation of the most promising theories for the analysis of reactions in two dimensions, what leaves open a large field for new research. The major challenge resides in the time range in which the processes take place, but the possibilities of the existing techniques for these studies are far from exhausted. We review also the attempts of several authors to quantitatively analyze the kinetics of reactions in biological membranes. Especially in this field, the recently developed microspectroscopies enclose a still unexplored potential.

PubMed Disclaimer

Publication types

LinkOut - more resources