Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jul 25:254-255:84-90.
doi: 10.1016/j.mce.2006.04.015. Epub 2006 May 30.

Mutations along the pituitary-gonadal axis affecting sexual maturation: novel information from transgenic and knockout mice

Affiliations
Review

Mutations along the pituitary-gonadal axis affecting sexual maturation: novel information from transgenic and knockout mice

Ilpo Huhtaniemi. Mol Cell Endocrinol. .

Abstract

During the last 10 years, numerous activating and inactivating mutations have been detected in the genes encoding the two gonadotrophins, luteinising hormone (LH) and follicle-stimulating hormone (FSH), as well as their cognate receptors (R), LHR and FSHR. Because activation of the hypothalamic-pituitary-gonadal axis is a crucial event in the onset and progression of puberty, mutations affecting gonadotrophin action have major influence on this developmental process. Many of the phenotypic effects observed have been expected on the basis of the existing information about gonadotrophin action (e.g. delayed puberty), but also many unexpected findings have been made, including the lack of phenotype in women with activating LHR mutations, and the discrepancy in phenotypes of men with inactivating mutations of FSHbeta (azoospermia and infertility) and FSHR (oligozoospermia and subfertility). Some of the possible mutations, such as inactivating LHbeta and activating FSHR mutations in women, have not yet been detected. Genetically modified mice provide relevant phenocopies for the human mutations and serve as good models for studies on molecular pathogenesis of these conditions. They may also predict phenotypes of the mutations that have not yet been detected in humans. We review here briefly the effects of gonadotrophin subunit and receptor mutations on puberty in humans and contrast the information with findings on genetically modified mice with similar mutations.

PubMed Disclaimer

MeSH terms

LinkOut - more resources