Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 7;128(22):7193-7.
doi: 10.1021/ja056745s.

Proton transfer-induced conformational changes and melting in designed peptides in the gas phase

Affiliations

Proton transfer-induced conformational changes and melting in designed peptides in the gas phase

Motoya Kohtani et al. J Am Chem Soc. .

Abstract

The conformations of protonated RA15K, RA20K and RA15H (R = arginine, A = alanine, K = lysine, and H = histidine) have been examined in the gas phase as a function of temperature. These peptides were designed so that intramolecular proton transfer will trigger conformational changes between a helix (proton sequestered at the C-terminus) and globule (proton sequestered at the N-terminus). Kinetically controlled structural transitions occur below 400 K (from helix to globule for RA15H, and from globule to helix for RA15K and RA20K). As the temperature is raised, the compact globule found at room temperature expands, accesses more configurations, and becomes entropically favored. At around 500 K, the RA15K and RA20K helices undergo a melting transition. The transition is broad, as expected for a phase transition in a finite system, and becomes narrower as the peptide size increases. In the helical conformation, the two basic residues are well separated; as a result, the proton transfer necessary to drive the melting transition probably involves a mobile proton. For doubly protonated RA15K, a dumbbell-like conformation (resulting from repulsion between the two protonated basic residues) is found at high temperature.

PubMed Disclaimer

Publication types

LinkOut - more resources