Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;152(Pt 6):1719-1729.
doi: 10.1099/mic.0.28617-0.

Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS)

Affiliations
Free article

Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS)

Michael Berney et al. Microbiology (Reading). 2006 Jun.
Free article

Abstract

The effectiveness of solar disinfection (SODIS), a low-cost household water treatment method for developing countries, was investigated with flow cytometry and viability stains for the enteric bacterium Escherichia coli. A better understanding of the process of injury or death of E. coli during SODIS could be gained by investigating six different cellular functions, namely: efflux pump activity (Syto 9 plus ethidium bromide), membrane potential [bis-(1,3-dibutylbarbituric acid)trimethine oxonol; DiBAC4(3)], membrane integrity (LIVE/DEAD BacLight), glucose uptake activity (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose; 2-NBDG), total ATP concentration (BacTiter-Glo) and culturability (pour-plate method). These variables were measured in E. coli K-12 MG1655 cells that were exposed to either sunlight or artificial UVA light. The inactivation pattern of cellular functions was very similar for both light sources. A UVA light dose (fluence) of <500 kJ m(-2) was enough to lower the proton motive force, such that efflux pump activity and ATP synthesis decreased significantly. The loss of membrane potential, glucose uptake activity and culturability of >80 % of the cells was observed at a fluence of approximately 1500 kJ m(-2), and the cytoplasmic membrane of bacterial cells became permeable at a fluence of >2500 kJ m(-2). Culturable counts of stressed bacteria after anaerobic incubation on sodium pyruvate-supplemented tryptic soy agar closely correlated with the loss of membrane potential. The results strongly suggest that cells exposed to >1500 kJ m(-2) solar UVA (corresponding to 530 W m(-2) global sunlight intensity for 6 h) were no longer able to repair the damage and recover. Our study confirms the lethal effect of SODIS with cultivation-independent methods and gives a detailed picture of the 'agony' of E. coli when it is stressed with sunlight.

PubMed Disclaimer

Publication types

LinkOut - more resources