Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;6(4):982-9.
doi: 10.1166/jnn.2006.174.

Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations

Affiliations

Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations

Dusan Losic et al. J Nanosci Nanotechnol. 2006 Apr.

Abstract

Diatoms produce diverse three-dimensional regular silica structures with nanometer to micrometer dimensions and hold considerable promise for biological and biomimetic fabrication of nanostructured materials and devices. In the present work, we describe the ultrastructural characterization of porous structures in diatom biosilica and discuss their potential as membrane filters for diffusion based separations. The frustules of two centric diatom species, Coscinodiscus sp. and Thalassiosira eccentrica, were investigated using scanning electron microscopy and atomic force microscopy. Their morphological features, including pore size, shape, porosity, and pore organization, are described. We observed that although pore organization in frustules of Thalassiosira eccentrica and Coscinodiscus sp. is in reverse order, a striking commonality is the size range of the smallest pores in both species (around 40 nm). The consensus lower pore size suggests that frustule valves have a common function at this size of excluding viruses or other deleterious particles, and the pore size and organization is optimized for this purpose. We suggest and implement an experimental approach to study the potential of diatom frustules for diffusive separation of molecular or nanoparticular components in microfluidic or lab-on-a-chip environments.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources