Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006:322:395-411.
doi: 10.1007/978-1-59745-000-3_28.

Studying fertilization in cell-free extracts: focusing on membrane/lipid raft functions and proteomics

Affiliations
Review

Studying fertilization in cell-free extracts: focusing on membrane/lipid raft functions and proteomics

Ken-ichi Sato et al. Methods Mol Biol. 2006.

Abstract

Xenopus oocytes, eggs, and embryos serve as an ideal model system to study several aspects of animal development (e.g., gametogenesis, fertilization, embryogenesis, and organogenesis). In particular, the Xenopus system has been extensively employed not only as a "living cell" system but also as a "cell-free" or "reconstitutional" system. In this chapter, we describe a protocol for studying the molecular mechanism of egg fertilization with the use of cell-free extracts and membrane/lipid rafts prepared from unfertilized, metaphase II-arrested Xenopus eggs. By using this experimental system, we have reconstituted a series of signal transduction events associated with egg fertilization, such as sperm-egg membrane interaction, activation of Src tyrosine kinase and phospholipase Cgamma, production of inositol trisphosphate, transient calcium release, and cell cycle transition. This type of reconstitutional system may allow us to perform focused proteomics (e.g., rafts) as well as global protein analysis (i.e., whole egg proteome) of fertilization in a cell-free manner. As one of these proteomics approaches, we provide a protocol for molecular identification of Xenopus egg raft proteins using mass spectrometry and database mining.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources