Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 May;257(2):754-66.

N-methyl-D-aspartate receptor-mediated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation: modulation by phencyclidine and glycine receptors

Affiliations
  • PMID: 1674535
Comparative Study

N-methyl-D-aspartate receptor-mediated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation: modulation by phencyclidine and glycine receptors

B G Campbell et al. J Pharmacol Exp Ther. 1991 May.

Abstract

Glutamate evoked contractions of the longitudinal muscle/myenteric plexus (LMMP) preparation by an action at N-methyl-D-aspartate (NMDA) receptors. Other agonists at the NMDA recognition site, but not quisquilate or kainate, also contracted the LMMP, and glutamate-evoked contractions were competitively inhibited by selective NMDA receptor antagonists. Glutamate-evoked contractions were noncompetitively inhibited by MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten-5,10-imine moleate], phencyclidine (PCP) and other compounds that bind to the PCP receptor, which is a binding site on the NMDA channel complex. Their potencies for this effect were highly correlated with their affinities for the PCP receptor. Glycine significantly shifted the glutamate concentration-response curve to the left. Glycine site antagonists caused a glycine-sensitive, noncompetitive inhibition of glutamate-evoked contractions, and their potencies for this effect were highly correlated with their affinities for the glycine binding site of the NMDA channel complex. Mg++ and Zn++ also noncompetitively inhibited glutamate-evoked contractions. The modulatory effects of glycine, Mg++, Zn++ and PCP receptor ligands were specific to glutamate-evoked contractions. MK-801 was highly selective for inhibition of glutamate-evoked contractions; MK-801 also inhibited nicotinic responses at a 500-fold lower potency. Two novel compounds are described that bind to the PCP receptor with high affinity and selectively inhibit glutamate-evoked contractions in the LMMP.

PubMed Disclaimer

Publication types

LinkOut - more resources