Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jun;128(6):2858-66.
doi: 10.1210/endo-128-6-2858.

Sexual dimorphism of somatostatin and growth hormone-releasing factor signaling in the control of pulsatile growth hormone secretion in the rat

Affiliations

Sexual dimorphism of somatostatin and growth hormone-releasing factor signaling in the control of pulsatile growth hormone secretion in the rat

J C Painson et al. Endocrinology. 1991 Jun.

Abstract

A striking sexual dimorphism exists in the pattern of GH secretion and rate of somatic growth; however, the mechanism(s) mediating this sex difference is unknown. To elucidate the physiological roles of the hypothalamic neuropeptides, somatostatin (SRIF) and GRF, and their interrelation, in generating the sexually dimorphic GH secretory pattern we examined: 1) GH responsiveness to exogenous GRF and 2) the effects of immunoneutralization of endogenous SRIF and GRF on GH secretory dynamics, in free-moving male and female rats. In males, the GH response to 1 microgram rat(r)GRF(1-29)NH2 iv was significantly greater at peak compared to trough times of GH secretion (925.2 +/- 250.8 vs. 95.6 +/- 27.8 ng/ml; P less than 0.02), the latter known to be due to antagonization by the cyclic increased release of endogenous SRIF. In contrast, females failed to exhibit a time-dependent difference in GH responsiveness to GRF. Passive immunization with a specific antiserum to SRIF in males resulted in significant elevation of GH nadir levels but had no effect on GH peak amplitude. In contrast, immunoneutralization of endogenous SRIF in females caused a marked augmentation of plasma GH levels at all time points; there was a significant increase in GH peak amplitude (171.3 +/- 39.9 vs. 67.5 +/- 11.3 ng/ml; P less than 0.05), GH nadir (18.3 +/- 2.7 vs. 5.8 +/- 1.1 ng/ml; P less than 0.01) and mean 6-h plasma GH level (78.7 +/- 4.1 vs. 33.1 +/- 5.8 ng/ml; P less than 0.001), compared to normal sheep serum-treated controls. These results indicate that the pattern of hypothalamic SRIF secretion in females does not follow the male-like ultradian rhythm. Passive immunization with a specific antiserum to GRF obliterated spontaneous GH pulses in both sexes. Moreover, in females, anti-GRF serum attenuated GH nadir levels (4.3 +/- 1.7 vs. 21.4 +/- 3.5 ng/ml; P less than 0.01) indicating a physiological role for GRF in maintaining the elevated basal GH level of females, in addition to its important role in generating the episodic GH pulses. Taken together, these findings provide support for the hypothesis that, in female rats, the pattern of hypothalamic SRIF secretion into hypophyseal portal blood is continuous, rather than cyclical, as in the male; whereas in the case of GRF secretion, in addition to steady-state release which occurs at a higher level in females than males, there is also episodic GRF bursting which does not follow a specific rhythm, as in the male.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources