Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jun;99(4-6):463-9.
doi: 10.1016/j.jphysparis.2006.03.018. Epub 2006 Jun 5.

Functional neuroanatomy of the hypnotic state

Affiliations
Review

Functional neuroanatomy of the hypnotic state

Marie-Elisabeth Faymonville et al. J Physiol Paris. 2006 Jun.

Abstract

The neural mechanisms underlying hypnosis and especially the modulation of pain perception by hypnosis remain obscure. Using PET we first described the distribution of regional cerebral blood flow during the hypnotic state. Hypnosis relied on revivification of pleasant autobiographical memories and was compared to imaging autobiographical material in "normal alertness". The hypnotic state was related to the activation of a widespread set of cortical areas involving occipital, parietal, precentral, premotor, and ventrolateral prefrontal and anterior cingulate cortices. This pattern of activation shares some similarities with mental imagery, from which it mainly differs by the relative deactivation of precuneus. Second, we looked at the anti-nociceptive effects of hypnosis. Compared to the resting state, hypnosis reduced pain perception by approximately 50%. The hypnosis-induced reduction of affective and sensory responses to noxious thermal stimulation were modulated by the activity in the midcingulate cortex (area 24a'). Finally, we assessed changes in cerebral functional connectivity related to hypnosis. Compared to normal alertness (i.e., rest and mental imagery), the hypnotic state, significantly enhanced the functional modulation between midcingulate cortex and a large neural network involved in sensory, affective, cognitive and behavioral aspects of nociception. These findings show that not only pharmacological but also psychological strategies for pain control can modulate the cerebral network involved in noxious perception.

PubMed Disclaimer

LinkOut - more resources