Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;3(6):417-27.
doi: 10.1016/j.cmet.2006.04.010.

Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets

Affiliations
Free article

Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets

Chen-Yu Zhang et al. Cell Metab. 2006 Jun.
Free article

Abstract

Uncoupling protein 2 (UCP2) negatively regulates insulin secretion. UCP2 deficiency (by means of gene knockout) improves obesity- and high glucose-induced beta cell dysfunction and consequently improves type 2 diabetes in mice. In the present study, we have discovered that the small molecule, genipin, rapidly inhibits UCP2-mediated proton leak. In isolated mitochondria, genipin inhibits UCP2-mediated proton leak. In pancreatic islet cells, genipin increases mitochondrial membrane potential, increases ATP levels, closes K(ATP) channels, and stimulates insulin secretion. These actions of genipin occur in a UCP2-dependent manner. Importantly, acute addition of genipin to isolated islets reverses high glucose- and obesity-induced beta cell dysfunction. Thus, genipin and/or chemically modified variants of genipin are useful research tools for studying biological processes thought to be controlled by UCP2. In addition, these agents represent lead compounds that comprise a starting point for the development of therapies aimed at treating beta cell dysfunction.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources