Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;56(1):167-76.
doi: 10.1002/mrm.20923.

Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system

Affiliations
Free article

Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system

Thoralf Niendorf et al. Magn Reson Med. 2006 Jul.
Free article

Abstract

Coronary MR angiography (CMRA) is generally confined to the acquisition of multiple targeted slabs with coverage dictated by the competing constraints of signal-to-noise ratio (SNR), physiological motion, and scan time. This work addresses these obstacles by demonstrating the technical feasibility of using a 32-channel coil array and receiver system for highly accelerated volumetric breath-hold CMRA. The use of the 32-element array in unaccelerated CMRA studies provided a baseline SNR increase of as much as 40% over conventional cardiac-optimized phased array coils, which resulted in substantially enhanced image quality and improved delineation of the coronary arteries. Modest accelerations were used to reduce breath-hold durations for tailored coverage of the coronary arteries using targeted multi-oblique slabs to as little as 10 s. Finally, high net accelerations were combined with the SNR advantages of a 3D steady-state free precession (SSFP) technique to achieve previously unattainable comprehensive volumetric coverage of the coronary arteries in a single breath-hold. The merits and limitations of this simplified volumetric imaging approach are discussed and its implications for coronary MRA are considered.

PubMed Disclaimer

LinkOut - more resources