Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jul 7;58(4):487-99.
doi: 10.1016/j.addr.2006.03.001. Epub 2006 Jun 9.

Natural polymers for gene delivery and tissue engineering

Affiliations
Review

Natural polymers for gene delivery and tissue engineering

Jiyoung M Dang et al. Adv Drug Deliv Rev. .

Abstract

Although the field of gene delivery is dominated by viral vectors and synthetic polymeric or lipid gene carriers, natural polymers offer distinct advantages and may help advance the field of non-viral gene therapy. Natural polymers, such as chitosan, have been successful in oral and nasal delivery due to their mucoadhesive properties. Collagen has broad utility as gene activated matrices, capable of delivering large quantities of DNA in a direct, localized manner. Most natural polymers contain reactive sites amenable for ligand conjugation, cross-linking, and other modifications that can render the polymer tailored for a range of clinical applications. Natural polymers also often possess good cytocompatibility, making them popular choices for tissue engineering scaffolding applications. The marriage of gene therapy and tissue engineering exploits the power of genetic cell engineering to provide the biochemical signals to influence proliferation or differentiation of cells. Natural polymers with their ability to serve as gene carriers and tissue engineering scaffolds are poised to play an important role in the field of regenerative medicine. This review highlights the past and present research on various applications of natural polymers as particulate and matrix delivery vehicles for gene delivery.

PubMed Disclaimer

Publication types