Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;147(9):4392-9.
doi: 10.1210/en.2006-0334. Epub 2006 Jun 8.

Bone re/modeling is more dynamic in the endothelial nitric oxide synthase(-/-) mouse

Affiliations

Bone re/modeling is more dynamic in the endothelial nitric oxide synthase(-/-) mouse

F Grassi et al. Endocrinology. 2006 Sep.

Abstract

Nitric oxide is a ubiquitous estrogen-regulated signaling molecule that has been implicated in the regulation of bone maturation and remodeling. To better understand the role that bone-cell-secreted nitric oxide plays in ovariectomy-induced modifications of bone turnover, we examined the expression of endothelial NO synthase (eNOS) in bone cells and bone progenitor cells at regular intervals up to 10 wk after acute estrogen deprivation. Ovariectomy led to an anticipated initial decline in bone cell eNOS production, but surprisingly, 17 d after ovariectomy, eNOS expression by bone and marrow stromal cells dramatically rebounded and was maintained at high levels for at least 10 wk after surgery. We examined the long-term consequences of eNOS in the process of ovariectomy-induced bone loss by prospectively analyzing bone mineral density in wild-type and eNOS(-/-) mice for 10 wk after ovariectomy. Ovariectomized eNOS(-/-) mice were observed to undergo an exaggerated state of estrogen-deficiency-induced bone remodeling compared with wild-type controls, suggesting that eNOS may act to mitigate this process. Furthermore, we found that whereas bone formation in estrogen-replete wild-type mice slowed between 14 and 20 wk of age, eNOS knockout mice continued to accrue basal bone mass at a high rate and showed no sign of entering a remodeling stage. Our data suggest that eNOS may play an important role in limiting ovariectomy-induced bone remodeling as well as regulating the transition from basal modeling to remodeling.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources