Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;39(4):872-9.
doi: 10.1016/j.bone.2006.04.028. Epub 2006 Jun 12.

Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate

Affiliations
Free article

Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate

Matthew R Allen et al. Bone. 2006 Oct.
Free article

Abstract

One year of treatment with bisphosphonates at 5x the dose used for post-menopausal osteoporosis significantly increases failure load and microdamage, and decreases toughness at multiple skeletal sites in intact female beagles. The goal of this study was to determine if similar changes occur with doses equivalent to those used for post-menopausal osteoporosis treatment. Skeletally-mature female beagles were treated daily for 1 year with vehicle (VEH) or one of three doses of risedronate (RIS; 0.05, 0.10, 0.50 mg/kg/day) or alendronate (ALN; 0.10, 0.20, 1.00 mg/kg/day). Doses of ALN corresponded to treatment dose for PMO, 1/2 that dose, and 5x that dose on a mg/kg basis; RIS was given at a dose-equivalent to ALN. Vertebral density, geometry, percent ash, static/dynamic histology, microdamage, and biomechanical parameters were quantified. Trabecular bone activation frequency (Ac.f) was dose-dependently lower in RIS-treated groups (-40%, -66%, -84%, P < 0.05 vs. VEH) while the three ALN groups were all similarly lower compared to VEH (-65%, -71%, -76%; P <0.05). Crack surface density (Cr.S.Dn) was significantly higher than VEH for all doses of RIS and ALN (+2.9 to 5.4-fold vs. VEH). Stiffness was significantly increased with both agents while there were no significant changes in any other structural or estimated material properties. Cr.S.Dn and Ac.f exhibited a significant non-linear correlation (r(2) = 0.21; P < 0.001) while there was no relationship between Cr.S.Dn and any mechanical properties. These results document that 1 year of bisphosphonate treatment at clinical doses allows significant accumulation of microdamage in the vertebra but this is offset by increases in bone volume and mineralization such that there is no significant impairment of mechanical properties.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources