Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar-Apr;19(2):498-502.

Drug metabolizing enzyme changes after chronic buthionine sulfoximine exposure modify acetaminophen disposition in rats

Affiliations
  • PMID: 1676661

Drug metabolizing enzyme changes after chronic buthionine sulfoximine exposure modify acetaminophen disposition in rats

B W Manning et al. Drug Metab Dispos. 1991 Mar-Apr.

Abstract

This study examined the effects of prolonged exposure to buthionine sulfoximine (BSO) on 1) the overall elimination pharmacokinetics of acetaminophen; 2) the sulfate and glucuronide conjugation processes primarily responsible for acetaminophen elimination; and 3) in vitro microsomal and cytoplasmic enzyme activities in rats. Rats imbibed drinking water containing 30 mM BSO for 6 days and then received an iv injection of acetaminophen, 150 mg/kg in a propylene glycol vehicle. Exposure to BSO, a specific inhibitor of gamma-glutamylcysteine synthetase, produced marked depletion of glutathione (GSH) and resulted in induction of hepatic UDP-glucuronosyltransferase and GSH-S-transferase enzyme activities, but not cytochrome P-450. BSO pretreatment had no effect on the total or renal clearance of acetaminophen in rats. However, BSO exposure increased the partial clearance of acetaminophen to acetaminophen glucuronide by 47% (1.29 +/- 0.08 vs. 1.90 +/- 0.23 ml/min/kg; p less than 0.01) and significantly (p less than 0.02) increased the percentage of the dose recovered as the glucuronide conjugate from 17.6 +/- 2.5 to 26.5 +/- 0.6 The partial clearance of acetaminophen to acetaminophen sulfate was decreased, although not significantly, from 4.46 +/- 0.62 to 3.39 +/- 0.82 ml/min/kg. BSO treatment increased microsomal UDP-glucuronosyltransferase activity toward three xenobiotic aglycones, p-nitrophenol, 1-naphthol, and morphine by 308, 61, and 66%, respectively (p less than 0.05), but not toward testosterone or estrone. Cytosolic GSH-S-transferase activity toward 1-chloro-2,4-dinitrobenzene was increased 52% by BSO, whereas p-nitrophenol sulfotransferase activity was not altered. Cytochrome P-450 concentration and monooxygenase activity were unchanged by BSO exposure.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms