Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;19(3):178-82.
doi: 10.1097/01.bsd.0000172362.15103.e8.

Stability of the metastatic spine pre and post vertebroplasty

Affiliations

Stability of the metastatic spine pre and post vertebroplasty

Henry Ahn et al. J Spinal Disord Tech. 2006 May.

Abstract

Objective: Vertebrae with lytic metastases have an elevated risk of burst fracture and resultant neurologic compromise. Prophylactic vertebroplasty has the potential to reduce pain and the risk of burst fracture in the metastatic spine. The purpose of this study was to quantify the ability of vertebroplasty to stabilize metastatically involved vertebrae against the risk of burst fracture initiation with a standardized model of vertebral metastases.

Methods: Metastases were simulated in eight fresh-frozen cadaveric thoracolumbar spinal motion segments by removing a central core of trabecular bone and filling the defect with tumor tissue. Specimens were tested under a physiologic level of axial compression, intact, with a simulated tumor and post-vertebroplasty, and ultimately tested to failure. Axial load induced canal narrowing (CN) was used as a measure of the risk of burst fracture initiation. Following testing, vertebrae were axially sectioned to visualize cement fill.

Results: Vertebrae with simulated metastases exhibited significantly higher CN than intact specimens (227%+/-109%; P<0.05). Post vertebroplasty, three vertebrae exhibited reduced CN compared with the simulated tumor configuration, whereas the other five had increased CN. Specimens with reduced CN were found to have cement posterior to the tumor, whereas specimens with an increase in CN had cement anterior and lateral to the tumor only. Percutaneous vertebroplasty is effective in decreasing CN if tumor is surrounded posteriorly with cement. However, injecting cement into the posterior third of the vertebral body is risky due to potential extravasation into the canal.

Conclusion: Future work aimed at improving cement fill is necessary for safe and consistent stabilization of the metastatic spine with vertebroplasty.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources