Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 21;128(24):7896-903.
doi: 10.1021/ja060724w.

Antitumor enediyne chromoprotein C-1027: mechanistic investigation of the chromophore-mediated self-decomposition pathway

Affiliations

Antitumor enediyne chromoprotein C-1027: mechanistic investigation of the chromophore-mediated self-decomposition pathway

Masayuki Inoue et al. J Am Chem Soc. .

Abstract

C-1027 is an extremely potent antitumor agent that causes double-stranded DNA cleavages. It is a unique small molecule-protein complex composed of a highly reactive enediyne chromophore, which upon binding reacts with its target molecule DNA through radical-mediated hydrogen abstraction and an apoprotein that encapsulates the chromophore serving as its carrier to reach DNA. Although C-1027 has favorable properties as an effective drug delivery system, it slowly self-decomposes due to the reactivity of the chromophore toward the apoprotein. Understanding how the C-1027 destroys itself may enable design of its analogues that overcome this limitation. In this paper, mechanistic insights into the self-reactivity of C-1027 that facilitates its own decomposition are described. We provide evidence that the formation of the Gly96 radical, which promotes the oxidative protein scission and the subsequent chromophore release, is the major pathway for the self-decomposition of C-1027. On the basis of the newly isolated products of the self-decomposition, we propose that the apoprotein effectively protects two different structural elements of the chromophore that are essential for its biological activity: the nine-membered enediyne moiety (necessary for DNA cleavage) and the benzoxazine moiety (necessary for DNA intercalation). Using an engineered apoprotein analogue kinetically more stable toward the chromophore radical, we show that enhanced overall properties can be achieved for the natural C-1027 with respect to stability and antitumor activities. The results present the first example of a rationally designed C-1027 analogue reported to display superior in vitro antitumor activity to the natural C-1027. Our findings may have implications for design of proteins that can stably encapsulate highly reactive small molecules.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms