Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Jul;13(7):860-70.
doi: 10.1016/j.acra.2006.03.015.

Simulation of mammographic lesions

Affiliations
Comparative Study

Simulation of mammographic lesions

Robert Saunders et al. Acad Radiol. 2006 Jul.

Abstract

Rationale and objectives: This study presents a method for generating breast masses and microcalcifications in mammography via simulation. This simulation method allows for the creation of large image datasets with particular lesions, which may serve as a useful tool for perception studies measuring imaging system performance.

Materials and methods: The study first characterized the radiographic appearance of both masses and microcalcifications, examining the following five properties: contrast, edge gradient profile of masses, edge characteristics of masses, shapes of individual microcalcifications, and shapes of microcalcification distributions. The characterization results then guided the development of routines that created simulated masses and microcalcifications. The quality of the simulations was verified by experienced breast imaging radiologists who evaluated simulated and real lesions and rated whether a given lesion had a realistic appearance.

Results: The radiologists rated real and simulated lesions to have similarly realistic appearances. Using receiver operating characteristic analysis to characterize the degree of similarity, the results showed an A(z) of 0.68 +/- 0.07 for benign masses, 0.65 +/- 0.07 for malignant masses, and 0.62 +/- 0.07 for microcalcifications, thus showing notable overlap in the simulated and real lesion ratings.

Conclusion: This research introduced a new approach for simulating breast masses and microcalcifications that relied on anatomic characteristics measured from real lesions. Results from an observer performance experiment indicate that our simulation routine produced realistic simulations of masses and microcalcifications as judged by expert radiologists.

PubMed Disclaimer

Publication types

LinkOut - more resources