Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May;70(5):2066-71.
doi: 10.1152/jappl.1991.70.5.2066.

Depolarization reverses age-related decrease of spontaneous transmitter release

Affiliations

Depolarization reverses age-related decrease of spontaneous transmitter release

W B Alshuaib et al. J Appl Physiol (1985). 1991 May.

Abstract

The effect of increasing extracellular Ca concentration on spontaneous transmitter release was studied at soleus nerve terminals of young (10 mo) and old (24 mo) C57BL/6J mice depolarized by high extracellular K concentration ([K]o). By using intracellular recording, miniature end-plate potentials (MEPPs) were first recorded in a normal [K]o Krebs solution. Subsequently, MEPPs were recorded in high [K]o Krebs solutions with four different Ca concentrations: Ca-free/ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and 0.5, 1.5, and 2.5 mM Ca. In both the normal [K]o Krebs and the Ca-free-high [K]o Krebs solutions, MEPP frequency was lower at old than at young nerve terminals. In the three high [K]o Krebs solutions with Ca, MEPP frequency was progressively higher at old than at young nerve terminals with higher Ca concentrations. Periodic oscillations were observed in MEPP frequency of depolarized nerve terminals. The period of oscillation was inversely proportional to spontaneous transmitter release. These results demonstrate that when the nerve terminal is depolarized, permeability of the terminal membrane to Ca increases because of opening of voltage-dependent Ca channels. In the present study resting MEPP frequency was lower at old than at young terminals. On depolarization, MEPP frequency became higher at old than at young terminals. The study demonstrates that voltage-dependent Ca entry increases during aging at the soleus nerve terminal.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources