Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;66(8):1913-20.
doi: 10.1016/j.theriogenology.2006.05.010. Epub 2006 Jun 14.

1-Iodo-2methylundecane, a putative estrus-specific urinary chemo-signal of female mouse (Mus musculus)

Affiliations

1-Iodo-2methylundecane, a putative estrus-specific urinary chemo-signal of female mouse (Mus musculus)

Shanmugam Achiraman et al. Theriogenology. 2006 Nov.

Abstract

The present study was designed to identify the urinary volatiles across various reproductive stages of female mice in order to detect estrus-specific chemical signal. The urine of adult female mice were extracted with dichloromethane (1:1 ratio, v/v) and analyzed by gas chromatography linked mass-spectrometry (GC-MS). Numerous compounds were identified during estrus cycle of female mice urine. Among these, the compounds, namely, isocroctylhydrazine, 4-methyl-2-heptanone and auzulene were specific to proestrus stage and the compounds, 1-H-cyclopop-e.auzulene, caryophyllene, copanene were specific to estrus stage. However, the compound, 1-iodo-2methyl undecane (1I2MU) was observed both in proestrus and estrus phases and was absent in all other phases. The volatile signal produced at the end of proestrus and the beginning of estrus phase appears to be behaviourally important in the attraction of males. Moreover, the behaviour assay revealed that the compound, 1I2MU, is involved in attracting the male mice. This result concludes that the 1-iodo-2methyl undecane is considered as a putative estrus-specific chemo-signal.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources