Activation process of calcium-dependent potassium channel in Euhadra neurons: involvement of calcium/calmodulin and subsequent protein phosphorylation
- PMID: 1678336
- DOI: 10.1016/0300-9629(91)90027-a
Activation process of calcium-dependent potassium channel in Euhadra neurons: involvement of calcium/calmodulin and subsequent protein phosphorylation
Abstract
1. The activation process of Ca(2+)-dependent potassium channel was studied electrophysiologically and pharmacologically using identified neurons of the land snail, Euhadra peliomphala. 2. Ca(2+)-mediated delayed outward K current (IKD) was dose-dependently reduced by the calmodulin inhibitors, N-(6-aminohexyl)-1-naphthalenesulfonamide (W-5, week) and N-(6-aminohexyl)-5-chloro-naphthalenesulfonamide (W-7, potent). These antagonists also caused a slight membrane depolarization and increase in impulse discharge frequency with decrease in the amplitude of both action potential and after hyperpolarization. 3. The cAMP-dependent protein kinase inhibitor N-[2-(methylamino) ethyl]-5-isoquinoline-sulfonamide (H-8) did not produce any significant effect on IKD and membrane potential. 4. Calmodulin, when injected into the neuron which had been treated with either W-5 or W-7, transiently restored the suppressed IKD nearly to the pretreatment level, and caused hyperpolarization of the cell. In contrast, calcium chloride, intracellularly injected in the same way, had little effect on both the IKD and the membrane potential shifted by these antagonists. 5. Intracellular injection of kinase II, a Ca2+/calmodulin-dependent protein kinase, caused an increase in the IKD and membrane hyperpolarization. Similar but weak effects were produced when a catalytic subunit (CS) of cAMP-dependent protein kinase was intracellularly injected. However, the neurons pretreated with W-7 no longer had any detectable increase in the IKD and hyperpolarization of the membrane. 6. These results suggest the possibility that Ca2+/camodulin-dependent protein phosphorylation may finally mediate the activation of a certain number of potassium channels.
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials
Miscellaneous