Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Aug;11(8):2339-48.
doi: 10.1523/JNEUROSCI.11-08-02339.1991.

Neurotransmitter modulation of calcium channels in rat sympathetic neurons

Affiliations

Neurotransmitter modulation of calcium channels in rat sympathetic neurons

M R Plummer et al. J Neurosci. 1991 Aug.

Abstract

Adrenergic, cholinergic, and a variety of peptide neurotransmitters are known to modulate Ca currents in peripheral neurons. Using a protocol that allows for simultaneous assessment of effects on dihydropyridine (DHP)-sensitive and DHP-insensitive current components, we compared the actions of norepinephrine (NE), bethanechol (BeCh), and neuropeptide Y (NPY) on Ca currents in neonatal rat superior cervical ganglion neurons. Here, we show that these transmitters selectively depress the activity of DHP-insensitive Ca channels. Intracellular application of GTP-gamma-S, an activator of GTP-binding proteins, also exclusively affected the DHP-insensitive current, whereas 1,2-oleoylacetylglycerol (OAG), a protein kinase C (PKC) activator, depressed both the DHP-sensitive and DHP-insensitive currents. Pertussis toxin interrupted the coupling between NE and its effector, whereas three different inhibitors of PKC did not. Thus, we confirmed that the selective actions of the transmitters on Ca current appear to be mediated via GTP-binding proteins, but we found no evidence for direct involvement of PKC and conclude that the observed actions of OAG are distinct from those mediated by the neurotransmitters studied.

PubMed Disclaimer

Publication types

LinkOut - more resources