Probabilistic models of language processing and acquisition
- PMID: 16784883
- DOI: 10.1016/j.tics.2006.05.006
Probabilistic models of language processing and acquisition
Abstract
Probabilistic methods are providing new explanatory approaches to fundamental cognitive science questions of how humans structure, process and acquire language. This review examines probabilistic models defined over traditional symbolic structures. Language comprehension and production involve probabilistic inference in such models; and acquisition involves choosing the best model, given innate constraints and linguistic and other input. Probabilistic models can account for the learning and processing of language, while maintaining the sophistication of symbolic models. A recent burgeoning of theoretical developments and online corpus creation has enabled large models to be tested, revealing probabilistic constraints in processing, undermining acquisition arguments based on a perceived poverty of the stimulus, and suggesting fruitful links with probabilistic theories of categorization and ambiguity resolution in perception.
Similar articles
-
Do people use language production to make predictions during comprehension?Trends Cogn Sci. 2007 Mar;11(3):105-10. doi: 10.1016/j.tics.2006.12.002. Epub 2007 Jan 24. Trends Cogn Sci. 2007. PMID: 17254833
-
Embodied meaning in a neural theory of language.Brain Lang. 2004 May;89(2):385-92. doi: 10.1016/S0093-934X(03)00355-9. Brain Lang. 2004. PMID: 15068922 No abstract available.
-
Theory-based Bayesian models of inductive learning and reasoning.Trends Cogn Sci. 2006 Jul;10(7):309-18. doi: 10.1016/j.tics.2006.05.009. Epub 2006 Jun 22. Trends Cogn Sci. 2006. PMID: 16797219
-
Embodied language: a review of the role of the motor system in language comprehension.Q J Exp Psychol (Hove). 2008 Jun;61(6):825-50. doi: 10.1080/17470210701623605. Q J Exp Psychol (Hove). 2008. PMID: 18470815 Review.
-
[Language acquisition and statistical learning].Nervenarzt. 2003 Feb;74(2):133-43. doi: 10.1007/s00115-002-1466-1. Nervenarzt. 2003. PMID: 12596014 Review. German.
Cited by
-
When Can Predictive Brains be Truly Bayesian?Front Psychol. 2012 Nov 7;3:406. doi: 10.3389/fpsyg.2012.00406. eCollection 2012. Front Psychol. 2012. PMID: 23162491 Free PMC article. No abstract available.
-
What do we mean by prediction in language comprehension?Lang Cogn Neurosci. 2016;31(1):32-59. doi: 10.1080/23273798.2015.1102299. Epub 2015 Nov 13. Lang Cogn Neurosci. 2016. PMID: 27135040 Free PMC article.
-
Optimality and heuristics in perceptual neuroscience.Nat Neurosci. 2019 Apr;22(4):514-523. doi: 10.1038/s41593-019-0340-4. Epub 2019 Feb 25. Nat Neurosci. 2019. PMID: 30804531 Review.
-
Perception and hierarchical dynamics.Front Neuroinform. 2009 Jul 20;3:20. doi: 10.3389/neuro.11.020.2009. eCollection 2009. Front Neuroinform. 2009. PMID: 19649171 Free PMC article.
-
The autocorrelated Bayesian sampler: A rational process for probability judgments, estimates, confidence intervals, choices, confidence judgments, and response times.Psychol Rev. 2024 Mar;131(2):456-493. doi: 10.1037/rev0000427. Epub 2023 Jun 8. Psychol Rev. 2024. PMID: 37289507 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources