Increased level and longevity of protective immune responses induced by DNA vaccine expressing the HIV-1 Env glycoprotein when combined with IL-21 and IL-15 gene delivery
- PMID: 16785513
- PMCID: PMC2504862
- DOI: 10.4049/jimmunol.177.1.177
Increased level and longevity of protective immune responses induced by DNA vaccine expressing the HIV-1 Env glycoprotein when combined with IL-21 and IL-15 gene delivery
Abstract
We investigated the ability of a plasmid-derived IL-21 delivered alone or in combination with the IL-15 gene to regulate immune responses to the HIV-1 envelope (Env) glycoprotein induced by DNA vaccination. Mice were injected with the gp140DeltaCFI(HXB2/89.6) vector expressing a modified Env glycoprotein with C-terminal mutations intended to mimic a fusion intermediate, in which the most divergent region encoding the variable V1, V2, and V3 domains of CXCR4-tropic HxB2 virus was replaced with the dual-tropic 89.6 viral strain. Using a recombinant vaccinia virus expressing 89.6 Env glycoprotein (vBD3) in a mouse challenge model, we observed that IL-21 plasmid produced sustained resistance to viral transmission when injected 5 days after DNA vaccination. Moreover, IL-21 in a synergistic manner with IL-15 expression vector augmented the vaccine-induced recall responses to the vBD3 challenge compared with those elicited by immunization in the presence of either cytokine alone. The synergistic combination of IL-21 and IL-15 plasmids promoted expansion of CD8+CD127+ memory T cell pools specific for a subdominant HLA-A2-restricted Env(121-129) epitope (KLTPLCVTL). Our results also show that coimmunization with IL-21 and IL-15 plasmid combination resulted in enhanced CD8+ T cell function that was partially independent of CD4+ T cell help in mediating protection against vBD3 challenge. Furthermore, the use of IL-21 and IL-15 genes was able to increase Ab-dependent cellular cytotoxicity and complement-dependent lysis of Env-expressing target cells through augmentation of Env-specific IgG Ab levels. These data indicate that the plasmid-delivered IL-21 and IL-15 can increase the magnitude of the response to DNA vaccines.
Conflict of interest statement
The authors have no financial conflict of interest.
Figures
References
-
- Kiszka I, Kmieciak D, Gzyl J, Naito T, Bolesta E, Sieron A, Singh SP, Srinivasan A, Trinchieri G, Kaneko Y, Kozbor D. Effect of the V3 loop deletion of envelope glycoprotein on cellular responses and protection against challenge with recombinant vaccinia virus expressing gp160 of primary human immunodeficiency virus type 1 isolates. J. Virol. 2002;76:4222–4232. - PMC - PubMed
-
- Donnelly JJ, Wahren B, Liu MA. DNA vaccines: progress and challenges. J. Immunol. 2005;175:633–639. - PubMed
-
- Hanke T, McMichael AJ, Samuel RV, Powell LA, McLoughlin L, Crome SJ, Edlin A. Lack of toxicity and persistence in the mouse associated with administration of candidate DNA- and modified vaccinia virus Ankara (MVA)-based HIV vaccines for Kenya. Vaccine. 2002;21:108–114. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
