Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug;70(4):669-74.
doi: 10.1038/sj.ki.5001604. Epub 2006 Jun 21.

STAT3 attenuates EGFR-mediated ERK activation and cell survival during oxidant stress in mouse proximal tubular cells

Affiliations
Free article

STAT3 attenuates EGFR-mediated ERK activation and cell survival during oxidant stress in mouse proximal tubular cells

I Arany et al. Kidney Int. 2006 Aug.
Free article

Abstract

We have shown that renal epithelial cell survival depends on the sustained activation of the extracellular signal-regulated protein kinase (ERK) and lack of this activation was associated with death during oxidative stress. ERK is activated via the canonical epidermal growth factor receptor (EGFR)-Ras-MEK pathway, which could be attenuated by oxidants. We now show that the failure to activate ERK in a sustained manner during severe oxidative stress is owing to the activation of the signal transducer and activator of transcription-3 (STAT3) rather than the failure to activate the EGFR. Tyrosine phosphorylation of the EGFR and STAT3 was studied in hydrogen peroxide (H(2)O(2))-treated mouse proximal tubule (TKPTS) cells or in mouse kidney after ischemia/reperfusion (I/R) injury by Western blotting. STAT3 activation was inhibited by either pharmacologically (AG490) through its upstream janus kinase (JAK2) or by a dominant-negative STAT3 adenovirus. EGFR was inhibited by AG1478. Survival was determined by fluorescence-activated cell sorter analysis and trypan blue exclusion. We found that the EGFR was phosphorylated on its major autophosphorylation site (Tyr1173) regardless of the H(2)O(2) dose. On the other hand, both I/R and severe oxidative stress - but not moderate stress - increased tyrosine phosphorylation of STAT3 in an EGFR and JAK2-dependent manner. Inhibition of JAK2 or STAT3 lead to increased ERK activation and survival of TKPTS cells during severe oxidative stress. Our data suggest a role of tyrosine-phosphorylated STAT3 in the suppression of ERK activation. These data suggest that the STAT3 pathway might represent a new target for improved survival of proximal tubule cells exposed to severe oxidant injury.

PubMed Disclaimer

Publication types

MeSH terms