Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 21:7:160.
doi: 10.1186/1471-2164-7-160.

Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels

Affiliations

Gene expression profiling of Spodoptera frugiperda hemocytes and fat body using cDNA microarray reveals polydnavirus-associated variations in lepidopteran host genes transcript levels

M Barat-Houari et al. BMC Genomics. .

Abstract

Background: Genomic approaches provide unique opportunities to study interactions of insects with their pathogens. We developed a cDNA microarray to analyze the gene transcription profile of the lepidopteran pest Spodoptera frugiperda in response to injection of the polydnavirus HdIV associated with the ichneumonid wasp Hyposoter didymator. Polydnaviruses are associated with parasitic ichneumonoid wasps and are required for their development within the lepidopteran host, in which they act as potent immunosuppressive pathogens. In this study, we analyzed transcriptional variations in the two main effectors of the insect immune response, the hemocytes and the fat body, after injection of filter-purified HdIV.

Results: Results show that 24 hours post-injection, about 4% of the 1750 arrayed host genes display changes in their transcript levels with a large proportion (76%) showing a decrease. As a comparison, in S. frugiperda fat body, after injection of the pathogenic JcDNV densovirus, 8 genes display significant changes in their transcript level. They differ from the 7 affected by HdIV and, as opposed to HdIV injection, are all up-regulated. Interestingly, several of the genes that are modulated by HdIV injection have been shown to be involved in lepidopteran innate immunity. Levels of transcripts related to calreticulin, prophenoloxidase-activating enzyme, immulectin-2 and a novel lepidopteran scavenger receptor are decreased in hemocytes of HdIV-injected caterpillars. This was confirmed by quantitative RT-PCR analysis but not observed after injection of heat-inactivated HdIV. Conversely, an increased level of transcripts was found for a galactose-binding lectin and, surprisingly, for the prophenoloxidase subunits. The results obtained suggest that HdIV injection affects transcript levels of genes encoding different components of the host immune response (non-self recognition, humoral and cellular responses).

Conclusion: This analysis of the host-polydnavirus interactions by a microarray approach indicates that the presence of HdIV induces, directly or indirectly, variations in transcript levels of specific host genes, changes that could be responsible in part for the alterations observed in the parasitized host physiology. Development of such global approaches will allow a better understanding of the strategies employed by parasites to manipulate their host physiology, and will permit the identification of potential targets of the immunosuppressive polydnaviruses.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Encapsulation of beads in Spodoptera frugiperda last instar larvae. A. Time course of encapsulation, by transmission electronic and photonic observations. a) Bead 30 minutes post-injection (p.i.). Beads are covered by an uncharacterized granular material (as described in Galleria mellonella by Schmit and Ratcliffe [115]). b) Bead 1 hour p.i. c) Bead 2 hours p.i. d) Bead 4 hours p.i. d') Detail showing desmosomes between two cells involved in the capsule. e) Bead 24 hours p.i. (phase contrast observation). B. Effect of injection of HdIV on cellular response. In a) and b) HdIV have been injected 5 hours prior to the beads, in c) HdIV and beads were injected simultaneously. a) Bead 15 hours p.i. b) Bead 6 hours p.i. c) Beads 24 hours p.i. (phase contrast observation). LB: latex bead; C: capsule; gm: granular material; des: desmosome-like junction; H: hemocyte; J: cellular junction; p: pseudopode-like extension; SB: sephadex bead; arrowheads indicate cells already partially attached to each other. The scale bar corresponds to 1 μm in all views, with exception of Figure 1d'), where the scale bar corresponds to 0.5 μm.
Figure 2
Figure 2
Infection of Spodoptera frugiperda hemocytes after infection of untreated HdIV (left panels, a and b) and heat-inactivated HdIV (right panels, c and d) by transmission electronic observations. For both control and heat treatment, HdIV particles can be observed within the cytoplasm of hemocytes (black arrows, a and c) and in vacuoles (white arrows, b and d). C: cytoplasm; N: nucleus; V: vacuole.

References

    1. Hoffmann JA. The immune response of Drosophila. Nature. 2003;426:33–38. doi: 10.1038/nature02021. - DOI - PubMed
    1. Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect Biochem Mol Biol. 2002;32:1295–1309. doi: 10.1016/S0965-1748(02)00092-9. - DOI - PubMed
    1. Hoffmann JA. Innate immunity of insects. Curr Opin Immunol. 1995;7:4–10. doi: 10.1016/0952-7915(95)80022-0. - DOI - PubMed
    1. Hultmark D. Drosophila immunity: paths and patterns. Curr Opin Immunol. 2003;15:12–19. doi: 10.1016/S0952-7915(02)00005-5. - DOI - PubMed
    1. Kanost MR, Jiang H, Yu XQ. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev. 2004;198:97–105. doi: 10.1111/j.0105-2896.2004.0121.x. - DOI - PubMed

MeSH terms