Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun 22;354(25):2667-76.
doi: 10.1056/NEJMoa052955.

Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis

Affiliations
Free article

Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis

Silvia Svegliati Baroni et al. N Engl J Med. .
Free article

Abstract

Background: Systemic sclerosis (scleroderma) is characterized by immunologic abnormalities, injury of endothelial cells, and tissue fibrosis. Abnormal oxidative stress has been documented in scleroderma and linked to fibroblast activation. Since platelet-derived growth factor (PDGF) stimulates the production of reactive oxygen species (ROS) and since IgG from patients with scleroderma reacts with human fibroblasts, we tested the hypothesis that patients with scleroderma have serum autoantibodies that stimulate the PDGF receptor (PDGFR), activating collagen-gene expression.

Methods: We analyzed serum from 46 patients with scleroderma and 75 controls, including patients with other autoimmune diseases, for stimulatory autoantibodies to PDGFR by measuring the production of ROS produced by the incubation of purified IgG with mouse-embryo fibroblasts carrying inactive copies of PDGFR alpha or beta chains or the same cells expressing PDGFR alpha or beta. Generation of ROS was assayed with and without specific PDGFR inhibitors. Antibodies were characterized by immunoprecipitation, immunoblotting, and absorption experiments.

Results: Stimulatory antibodies to the PDGFR were found in all the patients with scleroderma. The antibodies recognized native PDGFR, inducing tyrosine phosphorylation and ROS accumulation. Autoantibody activity was abolished by preincubation with cells expressing the PDGFR alpha chain or with recombinant PDGFR or by PDGFR tyrosine kinase inhibitors. Stimulatory PDGFR antibodies selectively induced the Ha-Ras-ERK1/2 and ROS cascades and stimulated type I collagen-gene expression and myofibroblast phenotype conversion in normal human primary fibroblasts.

Conclusions: Stimulatory autoantibodies against PDGFR appear to be a specific hallmark of scleroderma. Their biologic activity on fibroblasts strongly suggests that they have a causal role in the pathogenesis of the disease.

PubMed Disclaimer

Comment in

Publication types

MeSH terms