Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 7;542(1-3):170-8.
doi: 10.1016/j.ejphar.2006.02.056. Epub 2006 May 17.

Beta-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects

Affiliations

Beta-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects

Göksel Sener et al. Eur J Pharmacol. .

Abstract

Methotrexate is an antifolate that is widely used in the treatment of rheumatic disorders and malignant tumors. The efficacy of methotrexate is often limited by severe side effects and toxic sequelae, where oxidative stress is noticeable. In the present study, the possible protective effect of beta-glucan in methotrexate-induced toxicity was investigated. Following a single dose of methotrexate injection (20 mg/kg), either saline or beta-glucan (50 mg/kg; orally) was administered for 5 days. After decapitation of the rats, trunk blood was obtained and the ileum, liver and kidney were removed to measure tissue malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content, as well as histological examination. Methotrexate caused a significant decrease in GSH levels, while MDA levels, MPO activity and collagen content were increased in all the tissues (P<0.05-0.001). On the other hand, administration of beta-glucan following methotrexate abolished the depletion of GSH and inhibited the increases in MDA, MPO activity and collagen content, while the histological analysis revealed that beta-glucan attenuated the tissue damage. Stimulation index, an indicator of oxidative burst in the neutrophils, was decreased by methotrexate (P<0.001), while beta-glucan abolished this effect. Furthermore, increased leukocyte apoptosis and cell death in methotrexate-treated animals were inhibited by beta-glucan (P<0.05). Thus, the findings of the present study suggest that beta-glucan, through its antioxidant and immunoregulatory effects, may be of therapeutic value in alleviating the leukocyte apoptosis, oxidative tissue injury and thereby the intestinal and hepatorenal side effects of methotrexate treatment.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms