Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May 3;547(2):199-207.
doi: 10.1016/0006-8993(91)90963-v.

Multiple fluorescent ligands for dopamine receptors. I. Pharmacological characterization and receptor selectivity

Affiliations

Multiple fluorescent ligands for dopamine receptors. I. Pharmacological characterization and receptor selectivity

A C Barton et al. Brain Res. .

Abstract

We report the synthesis and pharmacological characterization of novel fluorescently labeled ligands with high affinity and specificity for D1 and D2 dopamine receptors. D1-selective antagonist probes have been synthesized using (R,S)-5-(4'-aminophenyl)-8-chloro-2,3,4,5-tetrahydro-3-methyl-[1H]-3- benzazepin-7-ol, the 4'-amino derivative of the high affinity D1-selective antagonist, SCH-23390, while D2-selective antagonist probes were synthesized using the high affinity, D2-selective agonist, N-(p-aminophenethyl)spiperone (NAPS). In addition, we have synthesized fluorescent probes using an amino-derivative of the high affinity, D2-selective agonist, 2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT or N-0434). These ligands were coupled to the fluorescent moieties, fluorescein, rhodamine, coumarin, Texas red, Cascade blue, or Bodipy. This resulted in a wide variety of dopaminergic ligands which fluoresce at different wavelengths: Cascade blue and coumarin are blue fluorophores, fluorescein and Bodipy, are yellow-green, and Texas red and rhodamine are red. The interaction of these fluorescent ligands with dopamine and serotonin receptors was evaluated by examining their ability to compete for radioligand binding to D1 and D2 dopamine receptors and 5-HT1A, 5-HT1C and 5-HT2 serotonin receptors. We report here that these novel fluorescent ligands exhibit high affinity and, in general, selectivity for either D1 or D2 dopamine receptors. In addition, we demonstrate that the fluorescent derivatives of PPHT retain the full agonist efficacy exhibited by the parent compound.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources