Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul 4;45(26):7976-89.
doi: 10.1021/bi0601205.

An alternative clamp loading pathway via the T4 clamp loader gp44/62-DNA complex

Affiliations

An alternative clamp loading pathway via the T4 clamp loader gp44/62-DNA complex

Zhihao Zhuang et al. Biochemistry. .

Abstract

In bacteriophage T4, a clamp loading pathway that utilizes the T4 clamp loader (gp44/62) and ATP hydrolysis initially to form a complex with the clamp (gp45) has been demonstrated, followed by interaction with DNA and closing of the clamp. However, the recent observation that gp45 exists as an opened form in solution raises the possibility of other pathways for clamp loading. In this study, an alternative clamp loading sequence is evaluated in which gp44/62 first recognizes the DNA substrate and then sequesters the clamp from solution and loads it onto DNA. This pathway differs in terms of the initial formation of a gp44/62-DNA complex that is capable of loading gp45. In this work, we demonstrate ATP-dependent DNA binding by gp44/62. Among various DNA structures that were tested, gp44/62 binds specifically to primer-template DNA but not to single-stranded DNA or blunt-end duplex DNA. By tracing the dynamic clamp closing with pre-steady-state FRET measurements, we show that the clamp loader-DNA complex is functional in clamp loading. Furthermore, pre-steady-state ATP hydrolysis experiments suggest that 1 equiv of ATP is hydrolyzed when gp44/62 binds to DNA, and additional ATP hydrolysis is associated with the completion of the clamp loading process. We also investigated the detailed kinetics of binding of MANT-nucleotide to gp44/62 through stopped-flow FRET and demonstrated a conformational change as the result of ATP, but not ADP binding. The collective kinetic data allowed us to propose and evaluate a sequence of steps describing this alternative pathway for clamp loading and holoenzyme formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources