Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;54(1):18-32.
doi: 10.1207/s15327914nc5401_4.

Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens

Affiliations

Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens

Liisa J Nohynek et al. Nutr Cancer. 2006.

Abstract

Antimicrobial activity and mechanisms of phenolic extracts of 12 Nordic berries were studied against selected human pathogenic microbes. The most sensitive bacteria on berry phenolics were Helicobacter pylori and Bacillus cereus. Campylobacter jejuni and Candida albicans were inhibited only with phenolic extracts of cloudberry, raspberry, and strawberry, which all were rich in ellagitannins. Cloudberry extract gave strong microbicidic effects on the basis of plate count with all studied strains. However, fluorescence staining of liquid cultures of virulent Salmonella showed viable cells not detectable by plate count adhering to cloudberry extract, whereas Staphylococcus aureus cells adhered to berry extracts were dead on the basis of their fluorescence and plate count. Phenolic extracts of cloudberry and raspberry disintegrated the outer membrane of examined Salmonella strains as indicated by 1-N-phenylnaphthylamine (NPN) uptake increase and analysis of liberation of [14C]galactose- lipopolysaccharide. Gallic acid effectively permeabilized the tested Salmonella strains, and significant increase in the NPN uptake was recorded. The stability of berry phenolics and their antimicrobial activity in berries stored frozen for a year were examined using Escherichia coli and nonvirulent Salmonella enterica sv. Typhimurium. The amount of phenolic compounds decreased in all berries, but their antimicrobial activity was not influenced accordingly. Cloudberry, in particular, showed constantly strong antimicrobial activity during the storage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources