Endogenous gamma interferon-independent host resistance against Listeria monocytogenes infection in CD4+ T cell- and asialo GM1+ cell-depleted mice
- PMID: 1680104
- PMCID: PMC258904
- DOI: 10.1128/iai.59.10.3439-3445.1991
Endogenous gamma interferon-independent host resistance against Listeria monocytogenes infection in CD4+ T cell- and asialo GM1+ cell-depleted mice
Abstract
The effects of in vivo administration of antibodies against T-cell subsets and asialo GM1 (ASGM1)-bearing cells on endogenous gamma interferon (IFN-gamma) production and host defense in Listeria monocytogenes-infected mice were investigated. Endogenous IFN-gamma titers in the bloodstreams and spleen extracts of mice on day 2 of infection were partially suppressed by administration of rabbit anti-ASGM1 antibody, but not by anti-CD4 monoclonal antibody (MAb) or anti-CD8 MAb. Of the different combinations of these three antibodies, the most suppressive effect on IFN-gamma production was observed after administration of anti-CD4 Mab and anti-ASGM1 antibody, although anti-CD8 MAb combined with anti-CD4 MAb partially inhibited IFN-gamma production. In contrast, antilisterial resistance was suppressed by the administration of anti-CD8 MAb but not by anti-CD4 MAb or anti-ASGM1 antibody. Antilisterial resistance in mice in which both CD4+ cells and ASGM1+ cells had been depleted was performed as efficiently as in normal mice in spite of the fact that endogenous IFN-gamma production was markedly suppressed. Furthermore, these mice also eliminated L. monocytogenes cells efficiently from the spleens even when they were pretreated with anti-mouse IFN-gamma MAb. These results indicate that CD4+ T cells, CD8+ T cells, and ASGM1+ cells are all responsible for endogenous IFN-gamma production and that antilisterial resistance and endogenous IFN-gamma production are not absolutely correlated.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
