Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii
- PMID: 16801557
- PMCID: PMC1502489
- DOI: 10.1073/pnas.0510319103
Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii
Abstract
Toxoplasma gondii, an obligate intracellular protozoan of the phylum Apicomplexa, is estimated to infect over a billion people worldwide as well as a great many other mammalian and avian hosts. Despite this ubiquity, the vast majority of human infections in Europe and North America are thought to be due to only three genotypes. Using a genome-wide analysis of single-nucleotide polymorphisms, we have constructed a genealogy for these three lines. The data indicate that types I and III are second- and first-generation offspring, respectively, of a cross between a type II strain and one of two ancestral strains. An extant T. gondii strain (P89) appears to be the modern descendant of the non-type II parent of type III, making the full genealogy of the type III clonotype known. The simplicity of this family tree demonstrates that even a single cross can lead to the emergence and dominance of a new clonal genotype that completely alters the population biology of a sexual pathogen.
Conflict of interest statement
Conflict of interest statement: No conflicts declared.
Figures




Similar articles
-
Admixture and recombination among Toxoplasma gondii lineages explain global genome diversity.Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13458-63. doi: 10.1073/pnas.1117047109. Epub 2012 Jul 30. Proc Natl Acad Sci U S A. 2012. PMID: 22847430 Free PMC article.
-
Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome.Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14872-7. doi: 10.1073/pnas.0702356104. Epub 2007 Sep 5. Proc Natl Acad Sci U S A. 2007. PMID: 17804804 Free PMC article.
-
Success and virulence in Toxoplasma as the result of sexual recombination between two distinct ancestries.Science. 2001 Oct 5;294(5540):161-5. doi: 10.1126/science.1061888. Science. 2001. PMID: 11588262
-
Population structure of Toxoplasma gondii: clonal expansion driven by infrequent recombination and selective sweeps.Annu Rev Microbiol. 2008;62:329-51. doi: 10.1146/annurev.micro.62.081307.162925. Annu Rev Microbiol. 2008. PMID: 18544039 Review.
-
Recent origins among ancient parasites.Vet Parasitol. 2003 Jul 25;115(2):185-98. doi: 10.1016/s0304-4017(03)00206-1. Vet Parasitol. 2003. PMID: 12878422 Review.
Cited by
-
Modulation of innate immunity by Toxoplasma gondii virulence effectors.Nat Rev Microbiol. 2012 Nov;10(11):766-78. doi: 10.1038/nrmicro2858. Nat Rev Microbiol. 2012. PMID: 23070557 Free PMC article. Review.
-
Genotyping of European Toxoplasma gondii strains by a new high-resolution next-generation sequencing-based method.Eur J Clin Microbiol Infect Dis. 2024 Feb;43(2):355-371. doi: 10.1007/s10096-023-04721-7. Epub 2023 Dec 15. Eur J Clin Microbiol Infect Dis. 2024. PMID: 38099986 Free PMC article.
-
Prevalence and genetic characterization of Toxoplasma gondii strains isolated from 31 wild Passeriformes collected in North-Central Oklahoma.J Parasit Dis. 2023 Mar;47(1):140-145. doi: 10.1007/s12639-022-01548-5. Epub 2022 Nov 16. J Parasit Dis. 2023. PMID: 36910312 Free PMC article.
-
The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements.Mol Microbiol. 2008 Jun;68(6):1502-18. doi: 10.1111/j.1365-2958.2008.06249.x. Epub 2008 Apr 21. Mol Microbiol. 2008. PMID: 18433450 Free PMC article.
-
Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts.PLoS One. 2011;6(10):e26369. doi: 10.1371/journal.pone.0026369. Epub 2011 Oct 13. PLoS One. 2011. PMID: 22022607 Free PMC article.
References
-
- Tibayrenc M., Ayala F. J. Trends Parasitol. 2002;18:405–410. - PubMed
-
- Webster I. P. Parasitology. 1994;108:407–411. - PubMed
-
- Aspinall T. V., Guy E. C., Roberts K. E., Joynson D. H., Hyde J. E., Sims P. F. Int. J. Parasitol. 2003;33:97–103. - PubMed
-
- Ajzenberg D., Banuls A. L., Su C., Dumetre A., Demar M., Carme B., Darde M. L. Int. J. Parasitol. 2004;34:1185–1196. - PubMed
Publication types
MeSH terms
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
- R01 AI036629/AI/NIAID NIH HHS/United States
- AI21423/AI/NIAID NIH HHS/United States
- AI045806/AI/NIAID NIH HHS/United States
- F32 AI060306/AI/NIAID NIH HHS/United States
- R01 AI021423/AI/NIAID NIH HHS/United States
- R37 AI021423/AI/NIAID NIH HHS/United States
- R21 AI045806/AI/NIAID NIH HHS/United States
- AI41014/AI/NIAID NIH HHS/United States
- Z01 AI005093/ImNIH/Intramural NIH HHS/United States
- WT_/Wellcome Trust/United Kingdom
- R01 AI045806/AI/NIAID NIH HHS/United States
- AI05093/AI/NIAID NIH HHS/United States
- F32AI60306/AI/NIAID NIH HHS/United States
- R01 AI041014/AI/NIAID NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources